
End-to-end quality of service for large
distributed storage

Scott A. Brandt
Professor
University of California, Santa Cruz

and Carlos Maltzahn, Richard Golding, Theodore Wong
and Tim Kaldewey, Roberto Pineiro, Anna Povzner

6 August 2007

Project overview

• Collaboration between UCSC / IBM Almaden
• UCSC: Scott Brandt, Carlos Maltzahn

• IBM: Richard Golding, Theodore Wong

• 3 years / $1,000,000

• Goal: Improve end-to-end performance
management in large clustered storage
• From client, through server, to disk

• Manage performance

• Isolate traffic

• Provide high performance

Stages in the I/O path

1. Disk traffic

2. Management of server cache

3. Flow control across network

• within one client’s session; between clients

4. Management of client cache

client

cache

network

transport

disk
storage

cache

network

transport

flow
control
with one
client

connection
management
between
clients

IO selection
and head
scheduling

prefetch and
writeback
based on
utilization, QoS

app

app

I/O

scheduler

client

cache

network

transport

app

app

integration
between
client and
server cache

System architecture

Application

Storage
Server

QoS
Broker

Storage
Server

Storage
Server

Storage
Server

Request

Reservation

Utilization
reservations

1

2

3

4

Network
Server Caches

Disks
• Applications request

reservation from broker
• Specify workload: throughput,

read/write ratio, burstiness, etc.

• Broker does admission control
• Requirements are translated to

utilization

• Utilizations are summed to see
if they are feasible

• Once admitted, I/O streams are
guaranteed (subject to workload
adherence)

• Disk, cache, network
controllers maintain
guarantees

I/O

Fahrrad: Efficient QoS-aware Disk Scheduling

• Control of application resource reservation
and usage at the disk level

• Goals:
• Mixed hard, soft, and non-real-time workloads

• Arbitrary granularity of reservations

• Complete isolation of workloads

• Excellent I/O performance

Key observation

R
es

ou
rc

e
A

llo
ca

tio
n

Missed
Deadline

SRT

Dispatching
unconstrained

un
co

ns
tra

in
ed

co
ns

tra
in

ed

Resource
Allocation

SRTSoft
Real-
Time

Best
Effort

CPU-
Bound

 I/O-
Bound

Hard
Real-
Time

Rate-Based

constrained

• Scheduling consists of two
distinct questions

Resource allocation: How
much resources to allocate to
each process	

Dispatching: When to give
each process the resources it
has been allocated

• Most schedulers integrate
their management

• Separating them is powerful!

RBED RAD-based CPU scheduler

Hard
Real-time

Rate-
based

Best-
effort

Soft
Real-time

Rate

Deadlines

EDF w/
timers

Scheduling
Policy

Scheduling
Mechanism

Runtime
System

Rate

Period
WCET

Period
ACET

Priority PiPiPiPi
Adjusted at
run-time

Jobs w/
execution
time and
deadline

Utilization-based disk reservations

• Throughput reservations
• Assume worst-case behavior

• Allows reservation of a tiny fraction of actual
throughput

• Utilization reservations
• Easy to make, account for, and guarantee

• Embed application workload information

• Avoid the need for worst-case assumptions

• Workload knowledge + utilization reservation
+ isolation = throughput guarantee

Applying RAD to disk I/O

• Reservations based on disk time utilization
• Rate = utilization

• Deadlines = times at which actual utilization must
equal reserved utilization (= latency bound)

• Need to be able to reorder requests for
performance
• All requests that can be handled without

jeopardizing deadlines are put into a reordering
set

• Cannot ignore “context switches” (seeks)

Fahrrad: RAD-based I/O scheduling

1. Utilization-based reservation, with deadlines
• e.g., 50% of the disk every second, 10% every hour, etc.

2. Requests put into queues

• Each queue has a rate and deadlines

3. Micro-deadlines assigned to requests based on
target rate and worst-case assumptions

4. Requests released to Disk Scheduling Set (DSS)
based on micro-deadline

5. Requests scheduled for service from DSS

6. Micro-deadlines updated based on actual service
times

Fahrrad architecture

BE
20%

Disk
Scheduling
Set

App4App3 Applications

Fahrrad driver

Underlying driver

Session queues

SRT1
20%

SRT2
10%

HRT
50%

App1 App2

Guaranteeing deadlines

BE
20%

Disk
Scheduling
Set

App4App3 Applications

Fahrrad driver

Underlying driver

Session queues

SRT1
20%

SRT2
10%

HRT
50%

App1 App2

500
750
1000
1250
1500

250
100
150
200
250
300

50
250
375
500
625
750

125
250
375
500
625
750

125

WCET = 25 ms

μdeadlines assigned to each request: di = di-1 + WCET / U

Release to DSS

BE
20%

Disk
Scheduling
Set

App4App3 Applications

Fahrrad driver

Underlying driver

Session queues

SRT1
20%

SRT2
10%

HRT
50%

App1 App2

500
750
1000
1250
1500

250
100
150
200
250
300

50
250
375
500
625
750

125
250
375
500
625
750

125

WCET = 25 ms
Period of each RT stream = 250 ms

Requests with μ-deadline up to horizon (earliest deadline) move to DSS

Guaranteeing utilization

BE
20%

Disk
Scheduling
Set

App4App3 Applications

Fahrrad driver

Underlying driver

Session queues

SRT1
20%

SRT2
10%

HRT
50%

App1 App2

500
750
1000
1250
1500 300

250
375
500
625

375
500
625
750

Guarantee reserved utilization by shifting μ-deadlines

A few details

• DSS scheduling
• C-SCAN, SPTF, EDF

• Managing burstiness
• Slots—reserve utilization until request arrives

• Unused slots are allocated to other streams

• Slot swapping—aggregate requests in DSS by swapping slots
• Increases sequentiality of DSS

• Increases isolation and performance

• Isolation—accounting for overheads
• Each stream charged for its seeks

• Each streams charged 2 seeks per deadline

Fahrrad works

Utilization Throughput

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 2000 4000 6000 8000 10000

R
e

c
e
iv

e
d
 d

is
k
 t
im

e
 [
m

s
]

Time [ms]

60%, run length 8, period 100 ms
30%, run length 128, period 500 ms

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 2000 4000 6000 8000 10000

T
h
ro

u
g
h
p
u
t
[I

O
 p

e
r

s
e

c
]

Time [ms]

60%, run length 8, period 100 ms
30%, run length 128, period 500 ms

Isolation between request streams

Utilization Throughput

• Utilization and throughput of 4 I/O streams as period of stream 4
changes (sequential streams w/long queues)

• Rate: 20%

• Deadlines

• Streams 1-3: 2s

• Stream 4: varies from 125 ms to 2 s

HRT and BE (slack goes to BE)

Utilization Throughput

• Utilization and throughput of I/O streams as period of stream 4 changes

• Rate: 20%

• Deadlines

• Sequential SRT streams & random BE stream: 2s

• HRT: varies from 125 ms to 2 s

Performance vs. Linux

Linux Fahrrad

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

T
h
ro

u
g
h
p
u
t
[I
O

s
 p

e
r

s
e
c
]

Time [sec]

transaction
media 1
media 2

background

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

T
h
ro

u
g
h
p
u
t
[I
O

s
 p

e
r

s
e
c
]

Time [sec]

transaction
media 1
media 2

background

Disk scheduling conclusions

• Fahrrad provides
• Integrated hard real-time, soft real-time, and best-

effort service

• Arbitrary (nearly) reservation granularity

• Excellent isolation between processes

• Excellent performance

Server cache management

• Server caching isolates disk from application
behavior
• Buffering smooths workload

• Isolates disk from application period
• Disk deadlines are buffer full times

• Translates between time to space (and back)

• Aside: best-case for disk = worst-cast for cache

Server cache management

• Reads and writes are
handled differently

• Read cases
1. Cache hit: creates slack

2. Cache miss: sent to disk

3. Prefetch: uses slack to
increase efficiency

• NV cache⇒writes can be

delayed indefinitely

• In general: need at least 3
periods of server cache

D
S
S

Cache
hit

Cache
miss

Prefetch

Network management

• Moving data from client cache to server cache

• Network QoS is well-explored
• Currently examining existing solutions

• Cases
1. One client/server route: O(1)

2. One client/server route with arbitrary application
placement: O(n)

3. Many client/server routes
• w/trunking: polynomial with linear programming: O(n)?

• w/out trunking: NP-complete?

Client cache management

• Holds application data for transfer to server

• Further isolates application from disk
• Further reduces burstiness

• Further addresses independence of periods

• Coordinates with network and server cache

Spinoff: virtual disks

• Virtual disks—complete isolation of disk
functionality
• Capacity isolation

• Temporal isolation

• Performance isolation

• LUNs provide capacity isolation

• Fahrrad provides temporal and performance
isolation

Conclusions

• Excellent progress (< 1 year along)

• Disk scheduling: Fahrrad

• Server cache: In progress

• Networking: Preliminary investigation

• Client cache: TBD

• Lots of industry interest: IBM, NetApp, VMware,
SAP, NICTA/OK Labs, ...

• Pursuing DARPA follow-on building on end-to-
end QoS

